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g Abstract

Numerical rootfinding problems are quite common in stochastic modeling.
However, many solutions stop at the presentation of a probability generat-
ing function for the state probabilities. But with increasing easy access to
computing power, many problems whose answers were typically left in in-
complete form or for which there has been a search for alternative solution
methods are currently being reexamined. The class of Markov chains whose
transition matrices have quasi-triangular layouts (i.e., those having sub- or
super-triangular sets of zeros) is a good case in point. They have an espe-
cially nice structure which leads to a rather concise representation for the
generating functions. But the complete solution then requires the finding of
roots. Fortunately, these problems can be shown to have special properties
that make accurate rootfinding quite feasible, and we thus supply an efficient
numerical procedure for solution. -
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i* 1 INTRODUCTION

As numerous authors have noted (for example, Abolnikov and Dukhovny,
1987, Bailey, 1954, and Powell, 1985), many denumerable discrete-time NlarkovIchains (with particular applications in inventory, dam and queueing model-
ing) have one of two special transition-matrix structures. These forms have
been typically called quasi-triangular because of the presence of sub- or super-
triangular sets of zeros:

1aoo a01 a(Z2 0a-, ...

al0  all f 1 2  a13  ...

a 2 0  a 21  (22 a 2 3  ...

a K0 ,21 . 'IN2 n K3 ...

A z ao  a1  12 a 3  ...

o a) a 2  ...

0 ( a a l ..
I (1( l a o  ...5~ 0 )f

.. II .i ( ...

I and

EK-_1 bK 1 bK-2 bK_ . b. 0 0 0 0 .

EK b < bK _1  bA 2  ... b , bo 0 0 ...
B -- EK+l bK ,i b/ b ,_I ... b2 b bo 0  ...

EK2 bK 2  bK+i bK ... b3  b, b, bo ...

L ... .. . ... ... ...... ......... ..

* where

-I b .

The structure of these matrices <,ids 1,, some paiticulailv ( ' ')- 1

resentations for the probability generating functions (PGFs) of the lark
chain equilibrium state process. W n whe stationarY equation for such aI

I
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i arkov chain is exorcised, the PGF of the steady-state probabilities has all
algebraic function in its denominator whose roots are critical in the final so-
,iton. (We henceforth rtfer to this denominator function equated to zero as
the system's characteristic equation).

For the transition matrix A, the characteristic equation (CE) turns out
to be (at least for complex z with absolute value < 1)

z K La,z' ct(z), (1)
1=0

where K is as defined in the matrix representation A (correspond:ng, for ex-
ample, to a constant batch-input motule in bulk qucuc:). Under the assufqp
tion that a(z) possesses all its derivatives at z = 1 (i.e., that the distribution3 {a,} has all moments), a(z) may be set equal to the Laplace-Stieltjes trans-
fcrm of a distribution function [call that A(t), and set its mean to I/p of a
nonnegative random variable evaluated at A(I - z), where A is an arbitrary
positive consta it for the time being. Thus we may also write that

K K = A*4[A( I - z)]. (2)

3 The CE associated with the matrix B may be written as

Z" Ybtz' xv O(z), (3)

or

i Z B*[p(1 - z)]. (4)

i In these representations, the constant K is as given in B (corresponding,
for example, to a constant batch-service module in bulk queues), 3(z) is
defined as the PGF of the probabilities {h,}. and B* ;- the Laplac-Slieltjes
transform of a distribution function Icall t hat B(t), and set its nic;inih .\,i 4
a nonnegative random variable evaluat,,or at ,4 I z), where 11 is an arbilI ir"
positive constant.

I
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Recognize that Equations (I) and (3) are generalizations of the well-
known fundamental equatioii of branching processes, typically written as
z = f(z), where f would be the PGF fnr the number of offspring emanating
from one parent. Gross and Harris (1985). for example, provide the details

i of the root problem for this model. In actuality, it is the B problem which
Is in fact the more direct relative -f the branching process, zo it s this one

on which we comment in detail first.
The CE of the matrix B may be rewritten in the standard way by using

z = r exp(iO), and we find that

r K~ exp(i9K) =:B* [l - r cxp(70)))cxp(2rni) (5)

for n : 1,2 ..., K. This equation clearly has a root at unity, and by Rouch6's3 theorem, we can show that there are IK others inside the unit circle 1 z 1= 1
when the chain is ergodic. The condition for ergodicity is that

I¢3'(1) >: nb,, > K

5 or

I d W"- > K.
( d z )Z ~j

These can be shown to be equivalent to the requirement that KA/gu < 1.5 For the A-matrix problem, recall that the characteristic equation is

z" = Ai A(I - z)], (6)

f where A* is a Laplace-Stieltjes transform. Ergodocity obtains here when

c,'(]) 7 = a, < I

I n=
or

I A( hl A'N.
d2

i This is equivalent to requiring that A I • i.

I
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It is easily shown by Rouch6's theorem that (6) has K roots inside and

on the unit circle, including the root z-1. Abolnikov and Dukhovny (1987)
have noted that all the roots on the unit circle are, in fact, simple.

In the prior work of Chaudhry, Harris and Marchal (1989), we have seen
under an assumption of infinite divisibility that Equation (1) from matrix A
may be rewritten as

I K [o(Z)IK.

It then follows that

z = a,(z) c,,,K (, = 1. 2, ... , K), (7)

3 where Ej. is tn iirh (out of K) complex root, of unity.
When the original a(z) is infinitely divisible, The function aj(z) is itself

a legitimate PGF with a'(1) = A//IL - 1. The equation z = aj(z) has only
the root z = 1; the remaining K - 1 roots inside and on the unit circle follow
distinctly from the other K - 1 equations using Rouch6's theorem.

The analyticity of the Kth root of oi(z) and subsequent use of Rouche's
theorem for distinctness also follows when a(z) is nonzero though not neces-
sarily infinitely divisible. (See Chaudhry, Harris and Marchal, 1989.)

Unfortunately, it is not true that all ca(z) associated with such models
have no zeros inside the unit circle. However, we can feel comfortable know-
ing that a good number of the problems encountered in practice will have
infinitely divisible distributions since many such probability functions are
built up by mixtures and convolutions from the infinitely divisible exporen-
tial and Erlang. For all other distributions, one should always first, try to
determine whether a(z) is ever zero, for, if not, the Kth-root approach of the
infinitely divisible case will work.

The vanishing of a(z) is equivalent to requiring that

A*[A(1 - z)] = J 7f0_ CMZ)1 dA() =0.

By changing to the polar form z z r(cos0 4 isin 9) and then separali , -il
and imaginary parts, this is identical i,, asking that, simulanu:"rslv.

I / e coPi \r .i 9) dA(1 ) -
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and

if o e)A(I r Cos e)t sin[ (Ar sin t9)tJa(t)d di 0.

Chaudhrv, Harris and Marchal (1989) have established firm sufficient con-
ditions for distinctness of the roots for (I) and (2). But neither of their con-
ditions is necessary. Examples are presented in their paper for which a(z)
has zeros, but where the characteristic equations still have distinct roots. In
fact, they never found an example without distinct roots. But a proof that
this is indeed always true is elusive, and the search for a necessary condition
will be the subject of future research.

All of these arguments hold in a parallel way for the B-matrix problem,
as well, as long as 0'(1) > K, with its K roots strictly inside the unit circle.
The B-matrix version of the problem would then have 0l1 (z) in place of al(z)
in Equation (7).

2 ALGORITHM

3 The Chaudhry, Harris and Marchal (1989) experiences for both the A- and
B-matrix problems yielded a _nfarlv circular pattern of roots on the inside
of the unit circle. This is, indeed, perfectly predictable given the above
results. This comes directly from writing the right-hand side of the Kth
root of the characteristic equation as the product of a root of unity and the
Kth root of the probability generating function. The support of the randomUL.,i- 2 c prrepon;± to the npf a, is increasingly focused toward 0, so that
the net effect of the rniiltiplication is to move the root slightly away from
the unit circle's boundary toward the center, largely preserving a circle-like
appearance. In examples offered in the following, we display a number of
diagrams of such patterns. Some possible guidance for the speeding up of
the algorithm conies to mird from this formulation. It is to use the nth root

(out of K, n = 1,2,...,K) of unity as the starting point for each attempted
solution of (7). Thus we would set the initial value of the radius at I and 03 at 2rKi/n. We can even do a bit b-tt-r since we know thai fhe m,,difl111,,f
each root must be less than the posit i ... rl r,o, therefore" wC 1s an iniT a i

modulus for any particular problem t-aj , the smallest one olt ained s,, tar
I as n moves to K,

I
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Comlpare this to the approach tsd bv ('halhrv and colleams i !,,,
example. see Briere and ('haudhrv , t, f d t.he i(_,-, for the ( P -,,. I
problem, as in Equations (31 and I 'I i a IgI ri thn w-'rks r n the oga I

of Equation , using the real and im,-,ginarv parts separatel, First. thr5 real equation is snlved for r, holding - fixed Then the imaginary eqiiaon

is solved for n, given the derived r and fi xed P. If the re.,uIt is integral.
arc finished, otherwise, the fractinal iart .r n is usi, and cInpared t,, its

I counterpart related t, a larger P. If th, f,'rnher is smaller, the n 0 is imreas,-d
further. Such comparisons are repeated until there is a decrease betwen the
fractional parts of the last two derived 71 values. This indica! es that a r-..

is located at an angle between the last t ;, 0 values. Details -of the aig 1 1!:,r
are given i, Briere and Chaudhrv I 1'7

\Ve have built up our algrritin, t hen. from the it uit iel, appeaiwng

near-circular pattern found for the rots The rrots are ordered accoiding tc,
increasing angle 0. with a starting value f,, the search for the fn - )st r,

using the modulus of the n th rot and the anigle of the (n -- 1).Os rot of unity.I I K \Ve chose to explore the usr ,f a fixed-point algorithm, knowing
that a sufficient IV well-chosen st art inig point would lead t o convergence ,f
successive substitutions of z into E luati,, (7), This is particularly easy t,,

formulate in light of the linearity -f the left-hand side of (7).
Experimentation with this fixed-point technique has led to success, and

detailed examples are presented in the, follwing sections. To start the overall
algorithm, it is necessary to provide one of the roots of the problem and the

obvious initial choice is to find the real root on (0, 1), since we know the exact

angle of this particular root. Any method could be used to solve for this real
roo~t, actually, but we chose to use the same fixed-point approach, simplY for
uniformity in the algorithni. The derivation of a safe starting point for the

nlocation of the real root proved to be an interesting problem in its own right
Due to the knowledge that the support for ni is toward 0, an initial guess
greater than the value of the root would be natural.

At first, an initial valuie equal t, o'( I 'A)' for the A-matrix problem (or
equivalently. K/03'(1) for the B-m,"tri:.: mrdel) set-iied logical, ::n - - this is
tho (single) real ronrt (-- p) fnr the basic A1 Al./I queueing problem Whih'

this starting value (lid work in afl 0).' ". ih, ccuracy of the real . 1 ,liiil
was not ideal because small but h,th, r,,m, cornph'x ,m,. me.l s ,.,(,,

the solutirn. Nevertheless. all succssi:, ronts ,V'ere found c,,rrectlv and

their values matched those obtained vI ,ther rootfinding packages fe.g.. th,

I
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tPA('K implemnatirin of the Chaindhrv' approach !

The progress of convergence of the iteratin from starting values rutside

Of the near-circular pattern of roots ,,ild suffer fro1m discontinuities in the

derivatives of the fInct ion 01 z) brou,,ght about by the zeros (if any ) of t ,he

function a. But it has been observed that the ro(s of t( z') lie always out sid,-

of the locus of the roots of the chararteristic equatin (7). It has als,, been

observed that the root locus was skewed asymmetrically toward the posijtive

axis in the complex planie, thus making the roots with angles cI])scst to -,

those nf shortest modulus. Thus, if ne wished to provide starting va-,ues

within the basin of attraction of the desired roots, but avoid possible dis

continuities in the derivative, one could seek starting values at the ang, of

OK-2 - 2K 1.%' "K21 radians, finding the roots in the top half (f the coImplx:.:

plane by seeking the roots in the order 271%','7 with n - K 2. K 2 - 1.. .

thus ending with the real root in (. I I.

This variation on the technique proved particularly successful, and a start

ing value of, (r. v (0, -0K. 2) for the first root was used. The effect of this

variation was to present a value of slightlv less m,dulus than the desired

root. and at an angle of the (orrespIding root of unity, as the starting value
for the fixed point iteration on each rooT. In general, the numerical impact of

the variation was to improve the effb iencv of convergence for the fixed pint
by one to two iterations for each com plex root. The real root on (0,11 was

fund much more quickly by "coming fron the inside" of the root locus, andII
the c' rnplex comnponent of the root w~as exactly ze'ro.

* 3 Proof of Convergence

F,,r purposes of this proof. we assume that a(z) is infinitelv divisible and
thus that any onet of its roots is a proper PGF.

Theorem 1 [)rfinF the nth charoctcrzstic equation for the GE+, I and
EK/(;/I problrns as

011

07

I a zI I 1 I\ .I.Ct ,



where C,.K 7s the nth of K root- of ?Init?,, ald the roots zK1 , zK, K,.. , z,.

K2 = tK/2] are ordered starting with t, root of greateSt angle In the upl,7r

complex half plane, progressmng toward thf posithvc rt-nl ari7s. From an 7nmfa/

pon t z(n ) = (n, 0,,) with modulus 7-o , 71 _K 2 th n 7713of successive substitutions,

3 applied to the nth charactcristzc equ at7o for t1h C,'EK I and L'1. p ro

lems w21l convergr to a uniquc root.

3 Proof Realize first that the characteristic equat,in is separiabl int, the.

factors f,.A" and a (Z,,) - a,,z' (say . Note that o(z,)1is a functioni (f

zXI) at the ith iteration of successive substitution, but that (,,K is unchanged1 hY the iteration. We are assured thai all the Z,, 71 1, ... , K are distinct

simple roots in or on the unit circle, as previously proven in Chaudhrv. Harris

and Marchal's Theorems 1 and 4. 1 It thus suffices to show then that the

fixed-point approach is guaranteed to converge to a root in z - 1 sn-c h

distinctness of the roots will assure as that there cannot be ccnvergenre f''

the same answer for more than one e.z1 . Also note that it has been shv.r;

empirically that z,+j < z, for ( ?z -_ A'2.
To complete the proof, then, the critical need is to show that the pr, ,a-

bility generating function al(z) is less than I - 6 (A an infinitesimal posit ire

cnnstant ) for any z chosen within or on the closed and bounde-d cont,,ur

z 1 6. This is indeed true because
I~ cc[ -l  CI

£ o~ _I < >: In 1" >i 01"(1-6)

<(I - = 1 -

since the {a,,} define a legitimate probability distribution under infinite

divisibilitv whenever the traffic intensitv J.5For certain o(z), this mav he due to the fai that the funti on o( is nT :, rI , ' ,

coniplex unit disk (at least), and for ma yIV prhlv,,is beca use o(z) is i nfi 1 ''. ;i ,',

In any other case, i.e., if a(z) itself has roots in iho on plex plane, t hr i ho ,friv .a.t .

f(z) ar, not continuous everywhere. This al,'n, does not prerlude ronverg,'nc' t, a ti

point, but may result in erra'tic performance of thr, iteiati'm.

I
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4 RESULTS

I For the exercise of our algorithm (called RVIX), we chose to apply the tech-
nique to a variety of the systems an.-lx zed in Chaudhry, Hairis and Marchal
(198i) - CHM in the following. Tho problems covered here re listed by
the corresponding table in that rpfereie paper: Table 1 (.Al'K)/M/1), Ta-
ble 2 (PH/EK/1), Table 3 kGH/Ep-1), Table 5 (PH/EK/1), an Table 7
(R,,/EK,/1), all solved as G/EK/1 or B-matrix formulations; and Table 8
(EK!/GEi1) solved as an EK/G,'1 or A-matrix model. We show our results
in tables numbered identically. To the problems of CHM, severa, !LI'Ei , I
and H2 EK/i1 problems unique to this paper were added to illustrate the
exercise of our algorilhm further. '1 hose additional problems appear in this
paper as Tables 4 and 6, resoectively For a basis of comparison, the algo-
rithm of Chaudhry and colleagues was exerci'ed on the same systems as our
fixed-point algorithm.

The stopping rule for the iteration, on each root was that successive root
values be less than 10-is in the square of EciIdean distance between them
in the complex plane. This resulted in approximately a 10' error in the real
and complex comoonents of the results.

In addition, an implementation of a bivariate Newton's method due to
Kahaner, Moler and Nash (199) was run over all cases. The times shown
are those for computing and displaying the roots in the upper half-plane.

lo provide a clearer picture of the environments under which our results
were obtained, we indicate in Table () the nature of the hardware used for5 each algorithm. The conten's of Table 0 apply to all problem types, except
for Tables IV and VI, where the Chaudhry algorithm was run on a 16 mHz
386 without a coprocessor. Thus the rootfinding times in Tables IV and VI
are without any bias from differing computational platforms.

I
I
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Table 0:f Computational Platforms

RFIX C HAUD KM&N3 machine 16 mHz 12 mHz 16 mHz
on which 386 286 386

algorithm no with no
was run coprocessor coprocessor coprocessor

Table I:
Selected Scenarios from Table 1, CHII, AI/EIK/l

(A = .1)

p Iu K intensity RFIX CHAUD KM&N
K A /p (in sec) (in sec) (in sec)

I 20.0000 10 .05 1 39 5

5 50.0000 25 2 43 12

200.0000 100 51 51

1000.0000 500 30 953 251

5 1.0526 10 .95 2 4 7

2.6316 25 3 4 15I

10.5263 100 7 10 54*

3 52.6316 500 30 281 257*

5 ' Found wrong positive, real rn,-i l-s than 1. This happened despite an 

initial guess rnod(z2) < zI.£

I
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Table II:
Selected Scenarios from Table 2, CHM, PH/EK/I

(A - 4.21)

p K intcnsity RFIX (>JIAUD KM&NIKA/ I (in sec) (in sec) (in sec)

.460 10 .91522 3 21 6t

4.210 10 .10000 3 21 5

.311 15 .90214 4 30 9t

S2.806 15 .10000 2 28 7

1.156 30 .90214 5 49 16t

1.403 30 .10000 3 49 14

i t Found real root 1.0 instead of z, K z= 1.

I
I
I
I
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Table Ill:3l Selected Scenarios from Table 3, CHM, GII/EK/1
(A = .85714)

5 In 1" intcnsity RFIX CHAUD KM&N
KA,'ji (Mn sec) (7,n sec) (in. sec)

910 10 .9.5238 5 21 9

3 85.00 10 .10084 1 21 4

14.01 15 .91771 4 52* 6

1 128.00 15 .10045 2 29 6

S29.00 30 .88670 4 90 12

257.00 30 .10006 3 48 14

p* Algorithm missed some complex roots, which were captured in a secondI pass.
# Positive, real root not found (error message = ITERATION NOT

MAKING GOOD PROGRESS).

I
I
I
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Table IV:
Selected Scenarios for Model F,,/F /1

(A 
.A)

3 K intensity RFIX CHAUD# KM&N
KA/1u (in scc) (in sec) (in sec)

5 2.8571 20 .7 3 5 20'

6.4286 45 5 8 51'

14.2857 100 10 13 117'

1 20.0000 20 .1 2 25 23"

45.0000 45 4 28 62"

100.0000 100 9 33 90'

2.2222 20 .9 3 5 22'

3 5.0000 45 6 7 48'

i 11.1111 100 10 12 123'

* KM&N became totally lost, finding several roots two or three times,

despite initial guesses at unique values. The KM&N subroutines found the
negative, real root (a second time) when given a positive, real initial value, for
example. Generally, KM&N did all right in the third quarter-plane (negative-
negative), becoming confused at or before 6 = 90' for K=20 or 9 = 45' for
K=100. Then previously found roots would be duplicated, with the negative5 real root (if any) recurring most often.

# The Chaudhry software was run ,T a 16 mHz 386 without a c,,pr,,',s-

g sor.

UI
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Table V:

Selected Scenarios from Table 5, CtlM, PH/EK/1
(A ().2)

3 ft K intensity RFIX CHAUD KM&N*
KA\/p (in sec) (7n sec) (in sec)

3 20.0 10 .100 2 2,5

2.2 10 .909 5 26

30.0 15 .100 2 35

1 3.3 15 .909 5 38

3 60.0 30 .10(0 3 63

6.6 30 .900 6 66

" QPACK solution was for slightly different parameter values using the

same model. The resultant root values were not identical to those obtained
using RFIX and KM&N, but we feel that the above QPACK run times are
representative.

* IKM&N could not perform the rootfinding operation for this problem
type. Incorrect values were found for all points.

I
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Table NI:
Selected Scenarios fnr NModel H2 /EK 1

(Al A 2  =-.1)

IL K intensity RFIX CHAUDt KM&N
KA/i (in sec) (I n sec) (in sec)

£ 1.0 15 .100 3 27 10
1.0 30 .100 5 29 19
1.0 95 .100 14 37 60I
1.0 500 .100 57 660

0.2 15 .500 4 7 10
0.2 30 .500 6 8 21
0.2 95 .500 14 17 633 0.2 500 .500 57 333

.11 15 .909 5 5 11*
.11 30 .909 7 7 21*
.11 95 .909 15 74 64*
.11 500 .90-9 58 365

* For the real root on the uppersheet at 360', there was agreement be-

tween KM&N and RFIX only to four or so digits.
# Missed real roots, so routine was rerun with smaller step size.
t The Chaudhry software was run on a 16 mHz 386 without a coprocessor.

U
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Table VII:
Selected Scenarios tor Model R,/t'K/l

(A 2 )

pt K intensity RFIX ,'HA UD KM&N
K , / p! I n s c) ("I nz st ) ('i n se ,:)

20.00 10 .10000 1 19 5

2.20 10 .90909 2 20 6

2000 15 .10000 2 26 7

i 2.13 15 .93750 2 27 8

320.00 30 .10000 3 46 14

2.06g 30 .96774 3 45 15

2.20 100 .90909 8 131 46

I
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Table VIII:

Selected Scenarios from Table 8, CHM, EK/GE 3/1]

A K intensity R1 IX CHAUT KNI&N
A/A'K (in sec) (i n scc) in sec)

3 210 .12 23 8

1810 .9 2 22 8

3 15 .1 2 31 9

1 27 15 .9 2 31 9

3 6 30 .1 3 51 20

36 30 .9 3 50 21U
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5 OBSERVATIONS

The performance of the fixed-point algorithm can be seen to be quite effec-
tive and stable accross a wide range of intensities and root quantities. A
unique feature of the fixed-point algorithm is that the number of successive
substitution iterations required per root actually goes down as the number
of roots grows (i.e., as K grows). This is understandable since the differences
between the moduli decrease as K grows, and the starting point for each root
is closer to the final point.

The performance in this problem of the other algorithms, namely, CHAUDi
QPACK and KM&N, is indicative of a fundamental difference between equa-
tions typically requiring rootfinding in applied probability. In the QPACK
and KM&N implementations, the equation zK = a(z) is analyzed for zeros
by t .;',ether 0 = "(z) - zK. This equation represents the usual ge-
ometric conceptualization in the complex plane with K zeros inside and on3 the unit disk. Contrast this with the equation used by RFIX,

i, r cl(,0+2rn), K

K F109/n 2,nt/K

I for n = 0,1,..., K- 1. Recall, as stated in Sec, ion 3, that once the root
of unity ,,K is specified, z, = a1 (z,),,K is one of the K branches of the
multiple-valued function a(z,)I/K. (For example, see Churchill, Brown and
Verhey, 1974, p. 88.) Each of the K branches yields an equation of tle form
Zn = 0 1 (z,) EnK, each of which is a mapping of the domain3 {r>0, --- r <8 <7rI onto the domain

{ 'r =p > 0,(2n- 1)r/K < 0 . (2P + l)7r/K}, n = 0,. .., 1.

Since each of these latter domains -ifn lhe transformed by an angular r,,-
tation to {p > 0,-7r/K < 0 < 4,r A }. the RFIX algorithn aniunits 1,1
solving K completely separate problems with a single root. This iS a geu,,-
metric interpretation of the proof in Stirn 3 that the algorithm will always

I ,
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converge to the intended root, whereas the other algorithms are, in fact, solv-3 ing for the K roots of a single problem. thus allowing for the possibility of
"skipped roots" and convergence to undesired roots.

To close out our computational work, we offer pictures of the precise
locations of the roots for three of the problems included in Table VIII, namely,
Figure 1 for A' l , p .1 Figure 2 for K = 15,p .9; and Figure 3 for
K 30, p .9.
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Figure 1:

Plot of Roots Inside and On the UJnit diskS),0 For Ein.GE3/1 Model.
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3 Figure 2:

Plot of Roots Inside and On the Unit disk
I For E1 1/GE./] Model.
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Figure 3:I
Plot of Roots Inside and On the Unit disk
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6 CONCLUDING REMARKS

I The efficacy of root finding for this problem should help remove the impres-
sion that rootfinding in stochastic anahysis was frought with hidden obstacles.
Results have indeed been uniformly favorable.

In the process of this work, it was observed over many problems that all
three algorithms spent significant time searching for the real root(s) of the
problem. In fact, as noted in Table 8, RFIX exhibited convergence prob-
lems for queueing systems of the EK-,/G/1 type. In general, the order of
convergence of fixed-point iterations is know to be linear (for example, ser-
Nonweiler and Horwood, 1984), while it is known quadratic for Newton's
method and 1.84 (nearly quadratic) for Muller's method.

However, our computational timings suggest a much better generalk record
of performance for our fixed-point approach. As pointed out in Nonweiler
and Horwood (1984), the order of convergence only relates to errors and
values. But each method (namely, fixed point, Newton's and Muller's) has
an associated computational burden per iteration, and the simplicity of the
fixed-point iteration of RFIX is shown in the illustrative code in Appendix 1.
By contrast, the number of operations in the high-level language implemen-
tations of .,M&N's software (Newton's method) and of Chaudhry's QPACK
(Muller's method) likely far exceed those of RFIX per iteration; indeed, the
sheer size of the KM&N source code (comments excluded) can give some clue
as to the fact that execution-time instruction count is several times greater.

Wh our results show empirically is:
(a) the number of execution-time instructions per iteration is far more

dominant than the number of iterations, producing the computational com-
plexity relationship Fixed Point < Newton's Method < Muller's Method;
and

(b) the ratio of improvemnent in speed of convergence (that is, time) be-
tween methods is not a constant from problem to problem, particularly with
changes in K. That is, if, for a fixed K of any problem type, we look at a
row of the appropriate table (namely, I - VIII) and calculate c, and C2 such
that tRFIx = c1 * t Ne,,to., and tRFIN c, * tA1,uf,'s, then we will find that

over all IK in a given problem (that is, fable) that c, and c, w,,uld ni,,t be
constant.

Thus, over all K, we might say that . - cI(1)* tN.,,.,o,,' and t RIj.,\

c2 (K)*tM,, 1 j,, where c1 (K) and c2( K are nonlinear functions. Thus th},

I
I
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fixed-point -nethod is substantially "inre than linear" relative to the other

methods in this context.

Thp fact that this feature was observed over a wide variety of character-

I istic equations implies that the fixed-point methdod may be more favorable
than other approaches for larger classes of rootfinding pro'.lems in probability

and statistics.
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Appendix I3 Illustrative FORTRA N Code for Successive Substitution Algorithm

program algorI complex z,e,zl
real el,e2
rO=.99I piz-3. 1415923
do 2 n=0,10
tO-n~p/1O.O
a rO* cos( tO)
b=7rO *sin(to)

z~cmplx(a,,b)U el z-cos(tO)
e2=sin( tO)
e~cmplx(e1 ,e2)

do I1 i1z,100

wrte( ),i(2 ./. *( z)* -,)

alreal(zl)
azreal(z)5 bizaimag(zl)
bz=aimag(z)
if(z.eq.zl)thenI goto, 3
else

I endi f
1 continue
.3 rO~sqrt(al**2+bl**2)Irt~l*,
2 continue

stop

end
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